Bảng tổng hợp công thức lượng giác đầy đủ

  • 130,000
  • Tác giả: admin
  • Ngày đăng:
  • Lượt xem: 13
  • Tình trạng: Còn hàng

Bảng tổ hợp khá đầy đủ những công thức thức lượng giác trung học phổ thông được khối hệ thống khoa học tập, cụt gọn gàng canh ty những em học viên rất có thể đơn giản dễ dàng học tập và vận dụng trong những dạng bài xích tương quan cho tới công thức lượng giác. Tham khảo ngay!

1. Khái niệm tỉ con số giác của góc nhọn

 tỉ con số giác của góc nhọn

Xét tình huống vô một tam giác vuông tớ sẽ sở hữu công thức về tỉ con số giác như sau:

sin : được xem tà tà tỉ số thân thiện chừng nhiều năm cạnh đối và chừng nhiều năm cạnh huyền của góc

cos : được xem là tỉ số thân thiện chừng nhiều năm cạnh kề và độ dài cạnh huyền của góc

tan : được xem là tỉ số giữa độ dài cạnh đối và độ dài cạnh kề của góc

cot : được xem là tỉ số giữa độ dài cạnh kề và cạnh đối của góc

Mẹo học tập nằm trong công thức lượng giác : "Sin tới trường, Cos ko hỏng, Tan liên minh, ,Cot kết đoàn"

2. Các công thức lượng giác cơ bản:

tanx= \frac{sinx}{cosx}

cotx= \frac{cosx}{sinx}

sin^{2}x + cos^{2}x = 1

tanx . cotx = 1 (x\neq k\frac{\pi }{2}, k\in Z )

1 + tan^{2}x = \frac{1}{cos^{2}x} (x \neq \frac{\pi }{2}+k\pi , k\in Z)

1 + cot^{2}x = \frac{1}{sin^{2}x} (x \neq \frac{\pi }{2}+k\pi , k\in Z)

3. Các công thức nằm trong lượng giác

sin (a ± b) = sin a.cos b ± cos a.sin b

cos (a + b) = cos a.cos b - sin a.sin b

cos (a - b) = cos a.cos b + sin a.sin b

tan(a+b) = \frac{tan a + tan b}{1 - tan a.tan b}

tan(a-b) = \frac{tan a - tan b}{1 + tan a.tan b}

Mẹo học tập nằm trong công thức nằm trong lượng giác: 

Các em học viên rất có thể học tập công thức nằm trong lượng giác theo đuổi câu thơ sau: "Sin thì sin cos cos sin, cos thì cos cos sin sin vết trừ. Tan thì tan nọ tan bại liệt phân chia mang lại kiểu mẫu số 1 trừ tan tan."

4. Công thức những cung links bên trên đàng tròn trĩnh lượng giác

Trong tình huống 2 góc đối nhau

cos (-x) = cos x

sin (-x) = -sin x

tan (-x) = -tan x

cot (-x) = -cot x

Trong tình huống 2 góc bù nhau

sin (\pi - x) = sin x

cos (\pi - x) = -cos x

tan (\pi - x) = -tan x

cot (\pi - x) = -cot x

Trong tình huống 2 góc phụ nhau

sin(\frac{\pi }{2} - x) = cosx

cos(\frac{\pi }{2} - x) = sinx

tan(\frac{\pi }{2} - x) = cotx

cot(\frac{\pi }{2} - x) = tanx

Trong tình huống nhì góc rộng lớn xoàng xĩnh π

sin (\pi  + x) = -sin x

cos (\pi + x) = -cos x

tan (\pi  + x) = tan x

cot (\pi  + x) = cot x

Trong tình huống nhì góc rộng lớn xoàng xĩnh π/2:

sin(\frac{\pi }{2} + x) = cosx

cos(\frac{\pi }{2} + x) = -sinx

tan(\frac{\pi }{2} + x) = -cotx

cot(\frac{\pi }{2} + x) = -tanx

Nắm hoàn toàn kỹ năng và kiến thức và cách thức giải từng dạng bài xích tập luyện về phương trình lượng giác với cỗ tư liệu gọi quyền của VUIHOC ngay

5. Công thức nhân lượng giác

Công thức lượng giác nhân đôi

sin2x = 2sinx.cosx

cos2x = cos^{2}x - sin^{2}x = 2cos^{2}x - 1 = 1 - 2sin^{2}x

tan2x = \frac{2tanx}{1 - tan^{2}x}

cot2x = \frac{cot^{2}x - 1}{2cotx}

Công thức lượng giác nhân ba

sin3x = 3sinx - 4sin^{3}x

cos3x = 4cos^{3}x - 3cosx

tan3x = \frac{3tanx - tan^{3}x}{1 - 3tan^{2}x}

Công thức lượng giác nhân bốn

sin4x = 4.sinx.cos^{3}x - 4.cosx.sin^{3}x

cos4x = 8.cos^{4}x - 8.cos^{2}x + 1

hoặc tớ rất có thể sử dụng cos4x = 8.sin^{4}x - 8.sin^{2}x + 1

6. Công thức hạ bậc lượng giác

Về cơ phiên bản công thức hạ bậc lượng giác đều được biến hóa kể từ công thức lượng giác cơ bản:

sin^{2}x = 1 - cos^{2}x = 1 - \frac{cos2x + 1}{2} = \frac{1 - cos2x}{2}

cos^{2}x = \frac{1 + cos2x}{2}

sin^{3}x = \frac{3sinx - sin3x}{4}

cos^{3}x = \frac{3cosx + cos3x}{4}

7. Công thức lượng giác trở thành tổng trở thành tích

cosa + cosb = 2cos\frac{a+b}{2}.cos\frac{a-b}{2}

cosa - cosb = -2sin\frac{a+b}{2}.sin\frac{a-b}{2}

sina + sinb = 2sin\frac{a+b}{2}.cos\frac{a-b}{2}

sina - sinb = 2cos\frac{a+b}{2}.sin\frac{a-b}{2}

tana + tanb = \frac{sin(a+b)}{cosa.cosb}

tana - tanb = \frac{sin(a-b)}{cosa.cosb}

sina + cosa = \sqrt{2}sin(a + \frac{\pi }{4}) = \sqrt{2}cos(a - \frac{\pi }{4})

sina - cosa = \sqrt{2}sin(a - \frac{\pi }{4}) = -\sqrt{2}cos(a + \frac{\pi }{4})

tana + cota = \frac{2}{sin2a}

cota - tana = 2cot2a

sin^{4}a + cos^{4}a = 1 - \frac{1}{2}sin^{2}2a = \frac{1}{4}cos4a + \frac{3}{4}

sin^{6}a + cos^{6}a = 1 - \frac{3}{4}sin^{2}2a = \frac{3}{8}cos4a + \frac{5}{8}

8. Công thức lượng giác biến hóa tích trở thành tổng

cosa.cosb = \frac{1}{2}[cos(a+b) + cos(a-b)]

sina.sinb = -\frac{1}{2}[cos(a+b) - cos(a-b)]

sina.cosb = -\frac{1}{2}[sin(a+b) + sin(a-b)]

9. Công thức nghiệm của phương trình lượng giác

Đối với những phương trình lượng giác cơ bản

sina = sinb \Leftrightarrow \begin{bmatrix} a = b + k2\pi và \\ a = \pi - b + 2k\pi và k \in Z \end{bmatrix}

cosa = cosb \Leftrightarrow \begin{bmatrix} a = b + k2\pi và \\ a = - b + 2k\pi và k \in Z \end{bmatrix}

tana = tanb \Leftrightarrow a = b + k\pi ; k \in Z

cota = cotb \Leftrightarrow a = b + k\pi ; k \in Z

Phương trình lượng giác vô tình huống quánh biệt

sina = 0 \Leftrightarrow a = k\pi (k\in Z)

sina = 1 \Leftrightarrow a = \frac{\pi }{2} + 2k\pi (k\in Z)

sina = -1 \Leftrightarrow a = -\frac{\pi }{2} + 2k\pi (k\in Z)

cosa = 0 \Leftrightarrow a = \frac{\pi }{2} + k\pi (k\in Z)

cosa = 1 \Leftrightarrow a = 2k\pi (k\in Z)

cosa = -1 \Leftrightarrow a = \pi + 2k\pi (k\in Z)

Đăng ký ngay lập tức và để được những thầy cô ôn tập luyện kỹ năng và kiến thức và kiến thiết suốt thời gian ôn ganh đua toán trung học phổ thông sớm ngay lập tức kể từ bây giờ

10. Bảng xét vết của những độ quý hiếm lượng giác

Góc phần tư số I II III IV
Sinx dương dương âm âm
Cosx dương âm âm dương
Tanx dương âm dương âm
Cotx dương âm dương âm

11. Bảng độ quý hiếm lượng giác của những góc quánh biệt

Tỉ con số giác của 2 góc phụ nhau (là 2 góc với tổng vì như thế 90 độ)

sina = cosb.cosa = sinb

tana = cotb.cota = tanb

Bảng độ quý hiếm lượng giác của những góc quánh biệt

a

(0 độ)

\frac{\pi }{6}

(30 độ)

\frac{\pi }{4}

(45 độ)

\frac{\pi }{3}

(60 độ)

\frac{\pi }{2}

(90 độ)

\frac{2\pi }{3}

(120 độ)

\frac{3\pi }{4}

(135 độ)

\frac{5\pi }{6}

(150 độ)

\pi

(180 độ)

\frac{3\pi }{2}

(270 độ)

2\pi

(360 độ)

sina 0 \frac{1}{2} \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} 1 \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} \frac{1}{2} 0 -1 0
cosa 1 \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} \frac{1}{2} 0 \frac{-1}{2} \frac{-\sqrt{2}}{2} \frac{-\sqrt{3}}{2} -1 0 -1
tana 0 \frac{1}{\sqrt{3}} 1 \sqrt{3} \parallel -\sqrt{3} -1 -\frac{1}{\sqrt{3}} 0 \parallel 0
cota \parallel \sqrt{3} 1 \frac{1}{\sqrt{3}} 0 -\frac{1}{\sqrt{3}} -1 -\sqrt{3} \parallel 0 \parallel

12. Các công thức lượng giác nâng lên bửa sung

Đặt  t = \frac{tanx}{2}

Lúc này tớ rất có thể trình diễn những công thức lượng giác khác theo t như sau:

sinx = \frac{2t}{1 + t^{2}}

cosx = \frac{1 - t^{2}}{1 + t^{2}}

tanx = \frac{2t}{1 - t^{2}}

cotx = \frac{1 - t^{2}}{2t}

13. Các bài xích thơ về công thức lượng giác

Bài thơ về công thức nằm trong lượng giác

"Sin thì sin cos cos sin 

Cos thì cos cos sin sin rồi trừ

Tang tổng thì lấy tổng tang

Chia 1 trừ với tích tang, dễ dàng nhưng mà."

Bài thơ về công thức về tan tổng

  tan(a+b) = \frac{tan a + tan b}{1 - tan a.tan b}

"Tan 2 tổng 2 tầng phía trên cao rộng

Trên thượng tằng tan nằm trong và tan

Hạ tầng số 1 rất rất ngang tàng

Dám trừ lên đường cả tan tan anh hùng"

Câu thơ ghi ghi nhớ độ quý hiếm lượng giác của những cung tương quan quánh biệt

"Cos đối, sin bù, phụ chéo cánh, tan rộng lớn xoàng xĩnh pi (π)"

Câu thơ ghi ghi nhớ nhanh chóng công thức lượng giác biến hóa tổng trở thành tích

"Tính sin tổng tớ lập tổng sin cô

Tính cô tổng lập tớ hiệu song cô song chàng

Còn tính tan tử + song tan (hay là: tan tổng lập tổng 2 tan)

1 trừ tan tích kiểu mẫu đem thương rầu

Nếu gặp gỡ hiệu tớ chớ lo lắng,

Đổi trừ trở thành nằm trong ghi thâm thúy vô lòng"

Đặc biệt so với tình huống tổng của tan tớ có:

"Tang bản thân + với tang tớ, vì như thế sin 2 đứa bên trên cos tớ cos mình"

tana + tanb: "Tình bản thân nằm trong lại tình tớ, sinh đi ra nhì người con bản thân con cái ta"

tana – tanb: "Tình bản thân trừ với tình tớ sinh đi ra hiệu bọn chúng, con cái tớ con cái mình"

Câu thơ ghi ghi nhớ nhanh chóng công thức lượng giác nhân đôi

sin2a= 2sina.cosa (tương tự động với những công thức khác)

Phương pháp ghi nhớ nhanh:

"Sin gấp hai vì như thế 2 sin cos

Cos gấp hai vì như thế bình phương cos trừ lên đường bình sin

Bằng trừ 1 nằm trong nhì bình cos

Bằng nằm trong 1 trừ nhì bình sin

(Chúng tớ chỉ việc ghi nhớ những công thức nhân song của cos vì như thế câu ghi nhớ bên trên rồi chính thức kể từ bại liệt rất có thể suy đi ra những công thức hạ bậc.)

Tan gấp hai vì như thế Tan song tớ lấy song tan (2 tan )

Chia một trừ lại bình tan, đi ra ngay tắp lự."

PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng suốt thời gian học tập kể từ mất mặt gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo đuổi sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học tới trường lại cho tới lúc nào hiểu bài xích thì thôi

⭐ Rèn tips tricks canh ty bức tốc thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền vô quy trình học tập tập

Đăng ký học tập test free ngay!!

Trên đó là toàn cỗ những kỹ năng và kiến thức cần thiết nhưng mà những em học viên cần thiết bắt được về Công thức lượng giác. Hy vọng với nội dung bài viết bên trên sẽ hỗ trợ những em đơn giản dễ dàng ghi ghi nhớ công thức nhằm giải quyết và xử lý những bài xích tập luyện tương quan cho tới lượng giác cũng như canh ty những em khối hệ thống loài kiến thức trong quy trình ôn ganh đua Toán trung học phổ thông Quốc gia. Để lần hiểu thêm thắt về kỹ năng và kiến thức về Toán 12 hay các môn học tập không giống, những em học viên rất có thể truy vấn thẳng vô website: . Chúc những em đạt được thành quả cực tốt trong những kì ganh đua tới đây.

Bài ghi chép rất có thể xem thêm thêm:

Xét Tính Đơn Điệu Của Hàm Số Lượng Giác

Lý thuyết và những dạng bài xích tập luyện hàm con số giác

Các Dạng Phương Trình Lượng Giác

Nguyên dung lượng giác cơ bản